Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 259: 124553, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37084607

ABSTRACT

Precision cancer medicine has changed the treatment landscape of non-small cell lung cancer (NSCLC) as illustrated by the introduction of tyrosine kinase inhibitors (TKIs) towards mutated epidermal growth factor receptor (EGFR). However, as responses to EGFR-TKIs are heterogenous among NSCLC patients, there is a need for ways to early monitor changes in treatment response in a non-invasive way e.g., in patient's blood samples. Recently, extracellular vesicles (EVs) have been identified as a source of tumor biomarkers which could improve on non-invasive liquid biopsy-based diagnosis of cancer. However, the heterogeneity in EVs is high. Putative biomarker candidates may be hidden in the differential expression of membrane proteins in a subset of EVs hard to identify using bulk techniques. Using a fluorescence-based approach, we demonstrate that a single-EV technique can detect alterations in EV surface protein profiles. We analyzed EVs isolated from an EGFR-mutant NSCLC cell line, which is refractory to EGFR-TKIs erlotinib and responsive to osimertinib, before and after treatment with these drugs and after cisplatin chemotherapy. We studied expression level of five proteins; two tetraspanins (CD9, CD81), and three markers of interest in lung cancer (EGFR, programmed death-ligand 1 (PD-L1), human epidermal growth factor receptor 2 (HER2)). The data reveal alterations induced by the osimertinib treatment compared to the other two treatments. These include the growth of the PD-L1/HER2-positive EV population, with the largest increase in vesicles exclusively expressing one of the two proteins. The expression level per EV decreased for these markers. On the other hand, both the TKIs had a similar effect on the EGFR-positive EV population.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , ErbB Receptors/genetics
2.
ACS Appl Mater Interfaces ; 13(36): 42513-42521, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34473477

ABSTRACT

We present an approach to improve the detection sensitivity of a streaming current-based biosensor for membrane protein profiling of small extracellular vesicles (sEVs). The experimental approach, supported by theoretical investigation, exploits electrostatic charge contrast between the sensor surface and target analytes to enhance the detection sensitivity. We first demonstrate the feasibility of the approach using different chemical functionalization schemes to modulate the zeta potential of the sensor surface in a range -16.0 to -32.8 mV. Thereafter, we examine the sensitivity of the sensor surface across this range of zeta potential to determine the optimal functionalization scheme. The limit of detection (LOD) varied by 2 orders of magnitude across this range, reaching a value of 4.9 × 106 particles/mL for the best performing surface for CD9. We then used the optimized surface to profile CD9, EGFR, and PD-L1 surface proteins of sEVs derived from non-small cell lung cancer (NSCLC) cell-line H1975, before and after treatment with EGFR tyrosine kinase inhibitors, as well as sEVs derived from pleural effusion fluid of NSCLC adenocarcinoma patients. Our results show the feasibility to monitor CD9, EGFR, and PD-L1 expression on the sEV surface, illustrating a good prospect of the method for clinical application.


Subject(s)
Biosensing Techniques/methods , Extracellular Vesicles/chemistry , Static Electricity , Antibodies, Immobilized/immunology , B7-H1 Antigen/analysis , B7-H1 Antigen/metabolism , Cell Line, Tumor , Electrochemical Techniques , ErbB Receptors/analysis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Extracellular Vesicles/drug effects , Extracellular Vesicles/immunology , Humans , Limit of Detection , Protein Kinase Inhibitors/pharmacology , Tetraspanin 29/analysis , Tetraspanin 29/metabolism
3.
Biosens Bioelectron ; 193: 113568, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34428672

ABSTRACT

Liquid biopsies based on extracellular vesicles (EVs) represent a promising tool for treatment monitoring of tumors, including non-small-cell lung cancers (NSCLC). In this study, we report on a multiplexed electrokinetic sensor for surface protein profiling of EVs from clinical samples. The method detects the difference in the streaming current generated by EV binding to the surface of a functionalized microcapillary, thereby estimating the expression level of a marker. Using multiple microchannels functionalized with different antibodies in a parallel fluidic connection, we first demonstrate the capacity for simultaneous detection of multiple surface markers in small EVs (sEVs) from NSCLC cells. To investigate the prospects of liquid biopsies based on EVs, we then apply the method to profile sEVs isolated from the pleural effusion (PE) fluids of five NSCLC patients with different genomic alterations (ALK, KRAS or EGFR) and applied treatments (chemotherapy, EGFR- or ALK-tyrosine kinase inhibitors). The vesicles were targeted against CD9, as well as EGFR and PD-L1, two treatment targets in NSCLC. The electrokinetic signals show detection of these markers on sEVs, highlighting distinct interpatient differences, e.g., increased EGFR levels in sEVs from a patient with EGFR mutation as compared to an ALK-fusion one. The sensors also detect differences in PD-L1 expressions. The analysis of sEVs from a patient prior and post ALK-TKI crizotinib treatment reveals significant increases in the expressions of some markers (EGFR and PD-L1). These results hold promise for the application of the method for tumor treatment monitoring based on sEVs from patient liquid biopsies.


Subject(s)
Biosensing Techniques , Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/genetics , Humans , Liquid Biopsy , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/therapeutic use
4.
Small ; 17(14): e2008155, 2021 04.
Article in English | MEDLINE | ID: mdl-33682363

ABSTRACT

Being a key player in intercellular communications, nanoscale extracellular vesicles (EVs) offer unique opportunities for both diagnostics and therapeutics. However, their cellular origin and functional identity remain elusive due to the high heterogeneity in their molecular and physical features. Here, for the first time, multiple EV parameters involving membrane protein composition, size and mechanical properties on single small EVs (sEVs) are simultaneously studied by combined fluorescence and atomic force microscopy. Furthermore, their correlation and heterogeneity in different cellular sources are investigated. The study, performed on sEVs derived from human embryonic kidney 293, cord blood mesenchymal stromal and human acute monocytic leukemia cell lines, identifies both common and cell line-specific sEV subpopulations bearing distinct distributions of the common tetraspanins (CD9, CD63, and CD81) and biophysical properties. Although the tetraspanin abundances of individual sEVs are independent of their sizes, the expression levels of CD9 and CD63 are strongly correlated. A sEV population co-expressing all the three tetraspanins in relatively high abundance, however, having average diameters of <100 nm and relatively low Young moduli, is also found in all cell lines. Such a multiparametric approach is expected to provide new insights regarding EV biology and functions, potentially deciphering unsolved questions in this field.


Subject(s)
Extracellular Vesicles , Biophysics , Cell Communication , Child , Humans , Microscopy, Fluorescence , Tetraspanins
5.
Nanoscale Adv ; 3(11): 3053-3063, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-36133670

ABSTRACT

Nanosized extracellular vesicles (EVs) have been found to play a key role in intercellular communication, offering opportunities for both disease diagnostics and therapeutics. However, lying below the diffraction limit and also being highly heterogeneous in their size, morphology and abundance, these vesicles pose significant challenges for physical characterization. Here, we present a direct visual approach for their accurate morphological and size-based profiling by using scanning electron microscopy (SEM). To achieve that, we methodically examined various process steps and developed a protocol to improve the throughput, conformity and image quality while preserving the shape of EVs. The study was performed with small EVs (sEVs) isolated from a non-small-cell lung cancer (NSCLC) cell line as well as from human serum, and the results were compared with those obtained from nanoparticle tracking analysis (NTA). While the comparison of the sEV size distributions showed good agreement between the two methods for large sEVs (diameter > 70 nm), the microscopy based approach showed a better capacity for analyses of smaller vesicles, with higher sEV counts compared to NTA. In addition, we demonstrated the possibility of identifying non-EV particles based on size and morphological features. The study also showed process steps that can generate artifacts bearing resemblance with sEVs. The results therefore present a simple way to use a widely available microscopy tool for accurate and high throughput physical characterization of EVs.

6.
Biosens Bioelectron ; 152: 112005, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32056733

ABSTRACT

Electrokinetic principles such as streaming current and streaming potential are extensively used for surface characterization. Recently, they have also been used in biosensors, resulting in enhanced sensitivity and simpler device architecture. Theoretical models regarding streaming current/potential studies of particle-covered surfaces have identified features such as the particle size, shape and surface charge to influence the electrokinetic signals and consequently, the sensitivity and effective operational regime of the biosensor. By using a set of well-characterized proteins with varying size and net surface charge, this article experimentally verifies the theoretical predictions about their influence on the sensor signal. Increasing protein size was shown to enhance the signal when their net surface charge was either opposite to that of the sensor surface, or close to zero, in agreement with the theoretical predictions. However, the effect gradually saturated as the protein size exceeded the coulomb screening length of the electrolyte. In contrast, the proteins containing the same type of charge as the surface showed little or no difference, except that the signal inverted. The magnitude of the surface charge was also shown to influence the signal. The sensitivity of the technique for protein detection varied over two orders of magnitude, depending upon the size and surface charge. Furthermore, the capacity of the electrokinetic method for direct electrical detection of various proteins, including those carrying little or no net electric charges, is demonstrated.


Subject(s)
Biosensing Techniques , Proteins/analysis , Algorithms , Biosensing Techniques/methods , Electricity , Electrochemical Techniques/methods , Particle Size , Static Electricity , Surface Properties
7.
ACS Sens ; 4(5): 1399-1408, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31020844

ABSTRACT

Small extracellular vesicles (sEVs) generated from the endolysosomal system, often referred to as exosomes, have attracted interest as a suitable biomarker for cancer diagnostics, as they carry valuable biological information and reflect their cells of origin. Herein, we propose a simple and inexpensive electrical method for label-free detection and profiling of sEVs in the size range of exosomes. The detection method is based on the electrokinetic principle, where the change in the streaming current is monitored as the surface markers of the sEVs interact with the affinity reagents immobilized on the inner surface of a silica microcapillary. As a proof-of-concept, we detected sEVs derived from the non-small-cell lung cancer (NSCLC) cell line H1975 for a set of representative surface markers, such as epidermal growth factor receptor (EGFR), CD9, and CD63. The detection sensitivity was estimated to be ∼175000 sEVs, which represents a sensor surface coverage of only 0.04%. We further validated the ability of the sensor to measure the expression level of a membrane protein by using sEVs displaying artificially altered expressions of EGFR and CD63, which were derived from NSCLC and human embryonic kidney (HEK) 293T cells, respectively. The analysis revealed that the changes in EGFR and CD63 expressions in sEVs can be detected with a sensitivity in the order of 10% and 3%, respectively, of their parental cell expressions. The method can be easily parallelized and combined with existing microfluidic-based EV isolation technologies, allowing for rapid detection and monitoring of sEVs for cancer diagnosis.


Subject(s)
Electric Conductivity , Extracellular Vesicles/metabolism , Biomarkers/metabolism , Cell Line, Tumor , ErbB Receptors/metabolism , HEK293 Cells , Humans , Tetraspanin 30/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...